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SINGULARTIES OF DYNAMIC PROCESSES PROCEEDING
IN DEFORMABLE SOLIDS WITH THE FINITE RATE OF
HEAT PROPAGATION TAKEN INTO ACCOUNT

R. H. Shvets and A. A, Lopat'ev UDC 536.24,01

The singularities of dynamic processes occurring in deformable solids at high frequencies are
studied on the basis of interrelated equations of the generalized theory of thermoelasticity.

The investigation of thermoelastic phenomena in solids has recently often been conducted on the basis of
a generalized dynamical theory of thermoelasticity [1-3] with the finite rate of heat propagation in the solid
taken into account, In this case the energy equation is an equation of hyperbolic type whose utilization for
small times in the domain of large gradients would afford the opportunity for a more accurate description of
the temperature fields [4] and the temperature stresses [2]. Experimental results on the dissipation of a heat
pulse in liquid helium at very low temperatures are explained by using the hyperbolic equation of heat conduc-
tion.

In this connection, it is expedient to study the singularities of the thermoelastic processes proceeding in
deformable solids by using the generalized dynamical theory of thermoelasticity.

Let us consider an infinite isotropic space possessing a thermal resistance. The thermoelastic motion
of the solid can be described by the system of equations [3]

pAu + (A -+ p) grad divu— (34 + 2p) a.grad (T— To) = p aaz; '
T *T de;; Pe;; )
. } i) @)
. ov t gr? T ( ot o o

0,; = ey, 8, + 2ue;; — (3N 4- 2w) a (T— Ty) 8y,
where djj is the Kronecker delta, A is the Laplace operator v, = (3A + 2u)aT /ocg.

To simplify the computations, we go over to the dimensionless variables

o* " A+20 of u 9 — T—T,
;= —— X, = T, W= i ’ = ,
A= e mEOn TG 0w o aT, T,
) @
O;i — v 3h -+ 2!"‘ p _ _C_l_
= @mramer, VW g P
in which system (1) becomes

w Aty — _ Py 3
" oR Au,- py grad div u;— grad 0= o (3)
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where ¢y =V(A + 2u)/p is the velocity of the longitudinal elastic wave; cq = VK/pcE Ty, rate of propagation of the
thermal wave; w* = B/7y, characteristic frequency of the material; and the coefficient vy characterizes the dis-
sipation of mechanical energy.

The heat flux relaxation time 7, depends on the heat transmission mechanism and is sufficiently compli-
cated to determine 7, exactly for specific materials, hence, mainly the order of magnitude is indicated in (3,
5]. It is known that the thermal energy in solids is transmitted by electrons and phonons. The main contribu-
tion to heat conductivity in dielectrics is from phonons, and the heat flux relaxation time in this case can be
calculated from the formula 7p = 3n/c{ [6]. The main contribution to heat transport in metals with their high
heat conductivity is from the free electrons whose velocity is on the order of 10® m/sec, However, the high
electron velocity still does not assure a high velocity of heat propagation. The square of the heat wave prop-
agation velocity is directly proportional to the thermal diffusivity » and inversely proportional to the heat
flux relaxation time 7, i.e., a high rate of heat wave propagation is possible in the case of high thermal dif-
fusivity or small relaxation time. The estimate 7o for metals is given in [8], and the order of magnitude of
Te is 10™* sec. It is possible to compute T = w*m*/e [7] approximately by means of the formula 7¢ [7]. For
godium Tg = 3 107! sec.

Since the relaxation time ordinarily varies even because of imperfections in the configuration of the sub-
stances, then 7, or its associated dimensionless quantity 8 will later be considered a parameter in the investi-
gation,

Let us examine the propagation of a plane harmonic wave of the form
{uy, 8} = {uy, 6} exp ({ot, + pzy). (6)

The phase velocity and damping coefficient are determined by means of the formula

()]
Im p,

» §i=Rep; (i=1, 2), Q)
where w = wy/w*; and p; and p, are roots of the equation
P PP (1 - B+ 1B) — io (1 + 1)} — io®4 Pot=0, ®
obtained after substituting (6) into (3) and (4), and are determined by the expressions
Pla= 3 (—a(+B+1B+io(l+9) =Dy, N o
Dy = {0 (1 + B+ 92— 02 (1 + 7)* — 2i® (1 + B+ 9B) (1 - ) — 4 (—io*+ Bo)} * .

The root p, describes a quasielastic wave and p; a quasithermal wave. For high and low frequencies w asymp-
totic expressions can be written for the roots pj.

For w ¥ 1, we have

1
L T _ e Y ; o[ v 0
'"’_i[2 (1”)‘”] {(1 2 [(1+v)2+ﬁ])+l(l+ 2 [(1+v)2 HD}’ a0
_ o?y . 0]
ne syt Vi )

and for w > 1
p1=:l:N1(%+im)» p2=iNz(442—2 +iw),

2—(1+B+W) A+
.ngl/l+ﬁ+vﬁq~“V(l+B+vﬁ)2—4I5 Mia - VOLB+oBP—4p a1
2 L+B-+vBFV (T +B+vB)>—2p

1+y+
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Fig. 1. Dependence of the dimensionless phase velocity v/cq and
damping coefficient q/(@.dg = o on the frequency w,

Fig. 2. Dependence of the dimensionless phase velocity vy/c; on the
dimensionless parameter §,

The dependence of the dimensionless phase velocity (solid lines) and damping coefficient (dash—dot lines)
of a quasielastic wave on the dimensionless frequency w is shown in Fig, 1 for different values of the parameter
B with a juncture coefficient ¥ = 0,0356, The damping coefficient q, is referred to the value of the coefficient as
w— o for B = 0. The dependence of the dimensionless phase velocity of a quasielastic wave on the parameter
B is presented in Fig, 2 for different frequencies, Characteristics of the quasithermal wave, the dimensionless
phase velocity (solid lines) and the damping coefficient (dashed lines) are illustrated in Fig. 3, where the num-
erical value of the damping coefficient q is referred to the value of the damping coefficient as w — = for g =
0.465, ‘

It is seen from the figures and the asymptotic expressions (10) and (11) that for the frequencies w; ¥ w*,
which are ordinarily realized during mechanical vibrations, the phase velocity and damping coefficient of a quasi-
elastic wave are practically independent of the parameter g, which means onthe heat-flux relaxation time Tyaswell;
i.e., it is sufficient fo use a parabolic heat conduction equation for such a frequency domain, At high fre-
guencies w; > w*, the parameter B exerts considerable influence on the characteristics of both the quasielastic
and the quasithermal waves.

For B< B*= (1~ y)/(1 + v)2the magnitude of the phase velocity of a quasielastic wave is always less than
the adiabatic, while greater for 8 > *. Only for low frequencies (v — 0) does it approach the value of the
adiabatic velocity asymptotically in both cases. Upon passing through the point 8 = 8%, an abrupt change in
the phase velocity is observed; however, this change remains finite and depends on the value of the parameter
v. In the case of the uninterconnected problem, the characteristic value 3* equals one, Thus, if

* 1—v — ___1__

SR T "
then a diminution in the phase velocity with frequency is observed, but an increase for 7 > 7§, and 'r’(‘; can be
considered the characteristic time for this material, which is related to the characteristic frequency and the
parameter y by relationship (12). Let us note that the frequencies of forced vibrations which can be achieved
in a solid exceed the characteristic frequency by more than two orders of magnitude [9). Values of the quanti-
ties w*, v, T§ are presented for certain metals in the table.

If we set Y8 = 0, then at high frequencies the phase velocity of the quasielastic wave tends to the isother-
mal velocity for any values of 5,

To clarify the influence of the heat—flux relaxation time on surface wave propagation, let us examine
Rayleigh wave propagation in a halfspace whose boundary is stress free, Let heat exchange occur according
to the Newton law between the halfspace and the surrounding medium [2]

oT
aX2

=L i}‘(ﬁ (T—Ty) for % =0, 13)
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TABLE 1. Values of the Characteristic Quantities for Certain

Metals
Parameters | Aluminum |  Copper | Steel | Lead
o*, 1/sec 4,66-101 1,73.101 1,75.1012 1,91.10u
v 0,0356 0,0168 0,0114 0,0733
T:, sec 0,193.1071 0,549.10-12 | 0,552.10~32 0,452.10~11

& 9 7
[ ({7“,)‘3;,[65 ‘1 //
/
4 i /L
|
13
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!
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== 765
gy Y73
00,0/ o v 00 w

Fig. 3. Dependence of the
dimensionless phase velocity
vi/cq and the damping coeffi-
cient q1/(d1)g = g.4¢5 on the fre-
quency w.

where ap is the heat-transfer coefficient and L = 1 + 7 d/d7 is an operator. Since we consider harmonic wave
propagation, then L = 1 + iw;T(. In this case the frequency equation has the form

v\l i(l+y 0 4 P l/ P v? . a, L3 (1 4 i)
=g [H G- Ve (o) (g
2 \2 v 1+9 4 v ® N V2
X[(zﬁig‘) o l/ % Ve & l/(l“ cg)(“”’“ c%”’ (14)

where ¢, is the velocity of shear wave propagation and pg is the wave number. In the case of low frequencies

w1<<w*
/ 2 \2 ) IR I
(2—-‘@) — ‘l/(l———cg—)(l——cf),cs::ci]/l—i—v, (15)

i.e., we obtain the known relationship from the theory of thermoelastic Rayleigh waves,

To determine the influence of the parameter 8 on the vibrations of a rod in the resonance frequency do~
main, let us examine the longitudinal vibrations of a rod of length I subjected to a periodic force

g2, 1) = go(2) cosar, (16)

under homogeneous boundary conditions on the displacements

Uy 2=? = Ov uii'ﬁ:D = 0,
2=,
1
ou | _g D
o fr,:o
and the temperature
00 a0
2 =0, 0, _, =0, =~ 0. 18
oz =0 = 97y lr=0 a8
If we introduce the function &
0@ a0 020 o2 R0
- — — —y T T 1
h dzt o, p o2’ 0=y 0201, +vB dz012 ' 9
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Fig. 4. Quantitative characteristics of thermo-
elastic rod vibrations.

then the thermoelastic vibrations of the rod under consideration can be described by the equation

l

o' PO >0 >0 ’0
— - = 20
i UV U B ) G g v G =g ™ 20
under appropriate boundary conditions for the function ®, Representing ®(z, 7¢) in the form of the series
2 - . amz
D ) ==—%D, (t)sin ——, 21
& =) = < zl () z 1)
we obtain an ordinary differential equation for &n(7y)
do, (t a2, (v B30, (v d‘®, (¢
k“(Dn(ti)-l-——-é'%-’)— B+ ~—dr—3——‘)— R ) p drg( ) _gicosory,  (22)
where
2 o . onnz J . hmz
gol2) = —l—z gnsin P Bn = [ g0 (2) sin dz. 23)
n=1 ; o

Applying the Laplace transform to (22), we find
@, = gn5/{(>+ 0% [Bst+ B+ (1 + B + vB) k25>+ k2(1 + y) s 441}
To perform the inverse Laplace transform, we must investigate the roots of the equation
Bst 4 (1 + B -+ vB) B2+ R2(1 +v) s+ K= C. (25)

It is easy to show that all the foots of (25) have a negative real part. Upon compliance with the condition
48K% > 1, (25) has two pairs of complex-conjugate roots, while a pair of real roots appears for 48K < 1,

24

Using the theorem on decompositions [10], to calculate the original, for 48k’ > 1 we find

®, (1) = Vg‘f sin @ + Ay) -+ gn [ —ﬂ;;— VB exp(— aymy) X
R i

 sint (Byry — Ay + 3%2— Vs EXP(——am)sin(ﬁzn—M)], (26)

where
A, = [fo*— (1 + B + vB) PP K2+ o [0>— k2 (1 + p)I%

N+ K? . Bo'— (1 + B+ vB) BP+ £
A1=_—M'z—‘; %, = arctg o1 +7)—of ]

Ay = arclg ?N . Ky = oy (AC + BD) + By (BC — ADY;

i
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N= —a, (BC— AD) + B, (AC + BD); A= a?—P? + o

B = 20By; C = (tp— 0P+ B — P75 D = 21 (00— y); @7
M = (42 B?) (Ct+ DY),

The expressions for A, and A, are written-analogously to (27).

For 48K < 1
n 1 — .
Dp () = VgA—;; sin (@t + &) + &» [ TR V' Bgexp (— oyy) sin (Byv,— xg)} +
n aexp(— aty)
(02 a?) [4Pa®— 3a2+ 2 (1 + B+ vP) R2a — B2 (1 + )]
. b exp (— bry)
(@ + 0?) [4Bb0— 362+ 2 (1 -+ B+ ) b — K2 (1 + )]
N3 + K3 N
A= __L—A%i , Ay = arctg K: ,

(28)
Ky= a4 (ACy+ BDy) -+ By (BC;— AD;), Ny= — ay (BC,— ADy) +

-+ By (AC,+ BDy), My = (A2 B?) x
X (C3 + D3), Cy=(@a—ay) (b —ay) —BF, Dy=ps(@a+b—2a,),

where —qq 5 £ i 5 or —ay, —by, —ay £ ifj are the roots of (25), for which analytic expressions can be written by
using a series expansion in a small parameter.

Substituting (26) or (28) into (21), we obtain the function &z, 7,), and the values of the displacement and
temperature from (19). Let us note that the members in the square brackets in (26) and (28) are the natural
thermoelastic vibrations of the rod, which damp out with time. The first members in (26) and (28) describe
the forced vibrations of the rod. It follows from (27) that for ¥y = 0, w = k resonance sets in, For y #0, the
amplitude of the rod vibrations is bounded at forced vibrations frequencies close to the vibrations frequencies
because of thermoelastic energy dissipation. Quantitative characteristics of the thermoelastic rod vibrations
are represented in Fig. 4. Values of the dimensionless forced-vibrations amplitude 1A/Ak are plotted along the
ordinate of Fig. 4a for different 8 for k = 1 and y = 0,0356, and the dimensionless frequency w is plotted along
the abscissa. The dependence of the damping decrement d = 27a/8; on the frequency (solid lines) for different
values of 3, as well as the dependence of the maximum values of the decrement dmax on 8 (dashed line) are
presented in Fig, 4b, The greatest value of the damping decrement is achieved at g = g*,

NOTATION
u is the displacement vector;
0ij is the stress tensor component;
ejj is the strain tensor component;
A, U are the Lame coefficients;
o is the linear coefficient of temperature expansion;
T is the temperature;
Ty is the initial temperature;
% is the thermal diffusivity;
K is the coefficient of heat conduction;
cE is the specific heat of unit mass;
P ) is the density;
T is the time;
Ty is the heat-flux relaxation time;
Tf Te are the phonon and electron relaxation times;
m* is the effective mass of the electron;
e is the charge on the electron;
¥ is the mobility;
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zZj is the dimensionless coordinate; .

Ty is the dimensionless time;

uy is the dimensionless displacement;

0 is the dimensionless temperature;

Zjj is the dimensionless stress tensor components;
is the dimensionless parameter;

ug, 9 are the wave amplitudes;

Pi> PR are the wave numbers;

q is the damping coefficient;

o is the coefficient of heat transfer;

@ is some function;

k = nn/l;1 is the rod length;

A, B, C, D,...,D, arethe some combinations of parameters introduced;

Q9 B2y 4, b are the roots of the characteristic equation;

vi is the phase veloeity;

Z is the coordinate along the rod axis,
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